

AAB University

Faculty of Computer Sciences

Introduction to Digital Technologies and Circuits

Week 8:

Arithmetic Circuits

Asst. Prof. Dr. **Mentor Hamiti** mentor.hamiti@universitetiaab.com

- Combinational Logic Circuits
 - Decoders
 - Encoders
 - Multiplexers
 - De-multiplexers
 - Other Combinational Circuits

Today

- Combinational Arithmetic Circuits
 - Adders
 - Sub tractors
 - Multipliers
 - Dividers
 - Other Circuits

Combinational Arithmetic Circuits

- Arithmetic circuits are the ones which perform arithmetic operations like: addition, subtraction, multiplication, division, parity calculation, etc.
- Most of the time, designing these circuits is the same or similar as designing:
 - Encoders,
 - Decoders,
 - Multiplexers,
 - De-multiplexers,
 - Code converters, etc.

Adders

- Adders are the basic building blocks of all arithmetic circuits
- Adders add two binary numbers and give out sum and carry as output
 - Example: X + Y = S + c
- Basically we have two types of adders:
 - Half Adder.
 - Full Adder.

Half Adder

- Adding two single-bit binary values X, Y produces a sum S bit and a carry out C-out bit. This operation is called half addition and the circuit to realize it is called a half adder.
- Truth Table:

X	Y	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

 $S (X,Y) = m^{1}(1,2) = X'Y + XY' = X \oplus Y$ $CARRY(X,Y) = m^{1}(3) = X \cdot Y$

Half Adder

$$S(X,Y) = m^{1}(1,2) = X'Y + XY' = X \oplus Y$$
$$CARRY(X,Y) = m^{1}(3) = X \cdot Y$$

Circuit:

Symbol:

Full Adder

- Full adder takes a three-bits input. Adding two single-bit binary values X, Y with a carry input bit C-in produces a sum bit S and a carry out C-out bit.
- Truth Table:

X	Y	Ζ	SUM	CARRY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

K-Diagrams:

Full Adder

$SUM = X \oplus Y \oplus Z$

CARRY = XY+YZ+XZ

Symbol:

n-bit (Carry Ripple) Adder

- An n-bit adder used to add two n-bit binary numbers can be built by connecting n full adders in series. Each full adder represents a bit position j (from 0 to n-1).
- Each carry out C-out from a full adder at position j is connected to the carry in C-in of the full adder at higher position j+1.
 The output of a full adder at position j is given by:

 $S_{j} = X_{j} \bigoplus Y_{j} \bigoplus C_{j}$ $C_{j+1} = X_{j} \cdot Y_{j} + X_{j} \cdot C_{j} + Y_{j} \cdot C_{j}$

- In the expression of the sum C_j must be generated by the full adder at lower position j. The propagation delay in each full adder to produce the carry is equal to two gate delays = 2 D. Since the generation of the sum requires the propagation of the carry from the lowest position to the highest position, the total propagation delay of the adder is approximately:
 - Total Propagation delay = 2 nD

4-bit Carry Ripple Adder

高

- Adds two 4-bit numbers:
 - $X = X_{3} X_{2} X_{1} X_{0}$ $Y = Y_{3} Y_{2} Y_{1} Y_{0}$

- Producing the sum: S = S₃ S₂ S₁ S₀,
 C_{out} = C₄ from the most significant position j=3
 - Total Propagation delay = 2 nD = 8D or 8 gate delays!

Larger Adder

- Example: 16-bit adder using 4x4-bit adders.
 - Adds two 16-bit inputs X (bits X₀ to X₁₅), Y (bits Y₀ to Y₁₅) producing a 16-bit Sum S (bits S₀ to S₁₅) and a carry out C₁₆ from the most significant position

 Propagation delay for 16-bit adder = 4 x propagation delay of 4-bit adder = 4 x 2 nD = 4 x 8D = 32 D or 32 gate delays

Carry Look-Ahead Adder

- The delay generated by an N-bit adder is proportional to the length N of the two numbers X and Y that are added because the carry signals have to propagate from one full-adder to the next.
- For large values of N, the delay becomes unacceptably large so that a special solution needs to be adopted to accelerate the calculation of the carry bits.
- This solution involves a "look-ahead carry generator" which is a block that simultaneously calculates all the carry bits involved.
- The design of the look-ahead carry generator involves two Boolean functions named Generate and Propagate. For each input bits pair these functions are defined as:

$$\begin{aligned} \mathbf{G}_{i} &= \mathbf{X}_{i} \cdot \mathbf{Y}_{i} \\ \mathbf{P}_{i} &= \mathbf{X}_{i} + \mathbf{Y}_{i} \end{aligned}$$

Carry Look-Ahead Adder

• For a four-bit adder the carry-outs are calculated as follows:

carry_outo = Go + Po * carry_ino

 $carry_out1 = G1 + P1 * carry_out0 = G1 + P1G0 + P1P0 * carry_in0$ $carry_out2 = G2 + P2G1 + P2P1G0 + P2P1P0 * carry_in0$ $carry_out3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1 * carry_in0$

Subtractor

- Subtractor circuits take two binary numbers as input and subtract one binary number input from the other binary number input.
- Similar to adders, it gives out two outputs, difference and borrow.
- There are two types of subtracters:
 - Half Subtracter.
 - Full Subtracter.

Half Subtracter

- The half-subtracter is a combinational circuit which is used to perform subtraction of two bits.
- It has two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and B (borrow).
- Truth Table:

Boolean expressions:

Borrow = X'Y

Half Subtracter

Difference = XY'+X'Y Borrow = X' Y

Circuit:

Symbol:

Full Subtracter

- A full subtracter is a combinational circuit that performs subtraction involving three bits, namely minuend, subtrahend, and borrow-in.
- Truth Table:

Х	Y	B _{in}	D	B _{out}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

 $D = X \oplus Y \oplus B_{in}$ $B = X'Y + X'B_{in} + YB_{in}$

Full Subtracter

- $D = X \oplus Y \oplus Bin$
- $\mathbf{B} = \mathbf{X'Y} + \mathbf{X'B_{in}} + \mathbf{YB_{in}}$
- Circuit:

A

Symbol:

Full subtractor composed by 2 half substractors:

Parallel Binary Subtracter

- Parallel binary subtracter can be implemented by cascading several full-subtracters.
- Block level representation of a 4-bit parallel binary subtracter, which subtracts 4-bit Y3Y2Y1Y0 from 4-bit X3X2X1X0. It has 4-bit difference output D3D2D1D0 with borrow output B_{out}

Serial Binary Subtracter

- A serial subtracter can be obtained by converting the serial adder using the 2's complement system.
- The subtrahend is stored in the Y register and must be 2's complemented before it is added to the minuend stored in the X register.
- The circuit for a 4-bit serial subtracter using full-adder:

Multipliers

- Multiplication is achieved by adding a list of shifted multiplicands according to the digits of the multiplier.
- An n-bit X n-bit multiplier can be realized in combinational circuitry by using an array of n-1 n-bit adders where each adder is shifted by one position.
- For each adder one input is the shifted multiplicand multiplied by 0 or 1 (using AND gates) depending on the multiplier bit, the other input is n partial product bits.

Dividers

- The binary divisions are performed in a very similar manner to the decimal divisions.
- Thus, the second number is repeatedly subtracted from the figures of the first number after being multiplied either with '1' or with '0'.
- The multiplication bit ('1' or '0') is selected for each subtraction step in such a manner that the subtraction result is not negative.
- The division result is composed from all the successive multiplication bits while the remainder is the result of the last subtraction step.

Other Circuits

Adder/Subtractor

S	Function	Comment
0	X + Y	Addition
1	X + Y' + 1	Subtraction

Other Circuits

Arithmetic-Logic Unit (ALU) b_1 b_3 b_2 b_0 a_3 a_2 a_1 a_0 S_0 S_1 М LE AE LE ΑE LE AE LE AE Cz C2 C_1 FΑ FA FA FA C₄ ◀

 f_2

Arithmetic Extender (AE) Logic Extender (LE)

Overflow

fa

Μ	S_1	S_0	Function Name
1	0	0	Decrement
1	0	1	Add
1	1	0	Subtract
1	1	1	Increment

 f_1

М	S ₁	S_0	Function Name
0	0	0	Complement
0	0	1	AND
0	1	0	Identity
0	1	1	OR

fо

Cn

Introduction to Digital Technologies and Circuits

Questions?!

mentor.hamiti@universitetiaab.com