

AAB University

Faculty of Computer Sciences

Introduction to Digital Technologies and Circuits

Week 4:

Boolean Algebra and Logic Functions

Asst. Prof. Dr. **Mentor Hamiti** mentor.hamiti@universitetiaab.com

Last Time

- Binary Arithmetic
 - Addition
 - Subtraction
 - Multiply
 - Divide
- Octal Arithmetic
- Hexadecimal Arithmetic
- Binary Codes
 - Weighted Codes
 - Non Weighted Codes

Today

- Boolean Algebra
- Logic (Boolean) Functions
- Representations of Boolean Functions
 - Switching Circuits
 - Truth Tables
 - Timing Diagrams
 - Venn Diagrams
 - K-Diagrams

Boolean Algebra

Let B={0, 1},

we can define three operations: + , • and ' on **B** as follows:

+	1	0		1			
1	1	1	1	1 0	0	1	0 1
0	1	0	0	0	0	0	1

In other words:

0 + 0 = 0	0 * 0 = 0	$\overline{0} = 1$
0 + 1 = 1	0 * 1 = 0	$\overline{1} = 0$
1 + 0 = 1	1 * 0 = 0	
1 + 1 = 1	1 * 1 = 1	

The operations + , • and ' on B={0, 1} are called *Boolean sum* (the logical OR), *Boolean product* (the logical AND) and *Boolean Complementation* (the logical NOT)!

Boolean Algebra

- <u>Definition</u>: The set B={0, 1} together with Boolean + , and ' is called a Boolean Algebra.
- A **Boolean expression** is a sequence of zeros, ones, and *literals* separated by Boolean operators.
- A literal is a primed (negated) or unprimed **variable** name. For our purposes, all variable names will be a single alphabetic character (Ex. A, B, C, X, Y, ...)
- A Boolean function is a specific Boolean expression; we will generally give Boolean functions the name "F" with a possible subscript. For example, consider the following Boolean: Fo = AB+C

Postulates and Theorems

• For any given algebra system, there are some initial assumptions, or *postulates*, that the system follows. We can deduce additional rules, theorems, and other properties of the system from this basic set of postulates.

Postulates: 0 + 0 = 00 * 0 = 0 $\overline{0} = 1$ 0 * 1 = 00 + 1 = 1 $\overline{1} = 0$ 1 * 0 = 01 + 0 = 11 * 1 = 11 + 1 = 1Theorems: A + 0 = AA * 0 = 0 $\overline{\overline{A}} = A$ A * 1 = AA + 1 = 1A + A = AA * A = A1 + A = 1 $A * \overline{A} = 0$

Postulates and Theorems

• We can prove all other theorems in Boolean algebra using these postulates, but we will not go into the formal proofs of these theorems, however, it is a good idea to familiarize our self with some important theorems in Boolean algebra. A sampling include:

$$(A + B)' = A' \cdot B' \quad or \quad \overline{A + B} = \overline{A} \cdot \overline{B}$$
$$(A \cdot B)' = A' + B' \quad \overline{A \cdot B} = \overline{A} + \overline{B}$$

DeMorgan's Theorems

 $A + A \cdot B = A$ $A \cdot (A + B) = A$ A + A'B = A + B $A' \cdot (A + B') = A'B'$ AB + AB' = A $(A' + B') \cdot (A' + B) = A'$

Dual and Inverse Functions

A

For every Boolean (Logic) Function:

a) $F = A \cdot B + C$ b) $F = A \cdot \overline{B} + \overline{A} \cdot B$ c) $F = A \cdot B + C \cdot (\overline{A} + B)$

• If in *Logic Function* $\begin{array}{c} 0 \rightarrow 1 \\ 1 \rightarrow 0 \\ + \rightarrow \cdot \\ \cdot \rightarrow + \end{array}$ the result is *Dual Function*:

a) $F_d = (A+B) \cdot C$ b) $F_d = (A+\overline{B}) \cdot (\overline{A}+B)$ c) $F_d = (A+B) \cdot [C+(\overline{A} \cdot B)]$

• If in *Dual Function* $A \to \overline{A} = \overline{A}$ the result is *Inverse Function*:

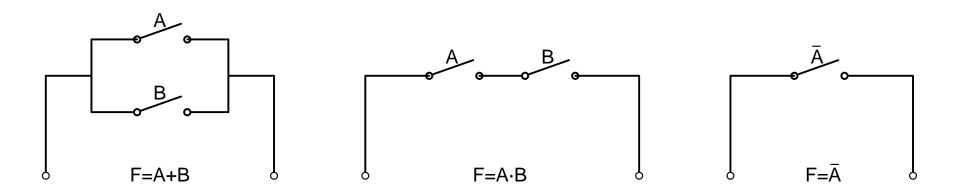
a) $\overline{F} = (\overline{A} + \overline{B}) \cdot \overline{C}$ b) $\overline{F} = (\overline{A} + B) \cdot (A + \overline{B})$ c) $\overline{F} = (\overline{A} + \overline{B}) \cdot [\overline{C} + (A \cdot \overline{B})]$

Representations of Boolean Functions

- I. Switching Circuits
- **II.** Truth Tables
- **III.** Timing Diagrams
- **IV.** Venn Diagrams
- V. K-Diagrams

I. Switching Circuits

 Representations of Boolean Functions with Switching Circuits:



I. Switching Circuits

• <u>Example 1</u>:

• Draw the circuits for the following functions:

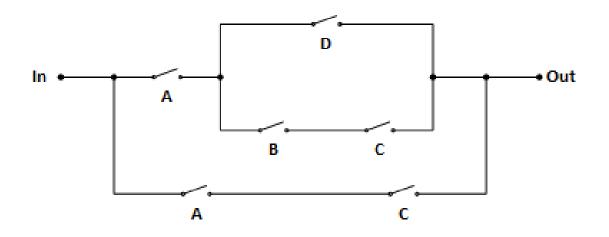
a)
$$F_1 = A \cdot B + C$$

b) $F_2 = A \cdot \overline{B} + \overline{A} \cdot B$
c) $F_3 = A \cdot B + C \cdot (\overline{A} + B)$

I. Switching Circuits

• <u>Example 2</u>:

• For the following circuit, find the output and design a simpler circuit that has the same output!



F = **?**

 Representations of Boolean Functions with Combinational Tables:

A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

F = A + B

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F = A \cdot B$$

Α	F	
0	1	
1	0	

- Minterms and Maxterms
- The sum of minterms functions form:

$$F = \sum_{i=0}^{2^n - 1} F_i \cdot m_i$$

The product of Maxterms functions form:

$$F = \prod_{i=0}^{2^{n}-1} (F_{i} + M_{i})$$

• <u>Example 3</u>:

• Draw the Truth (Combinational) Tables for the following functions:

a) $F_1 = A \cdot B + C$ b) $F_2 = A \cdot \overline{B} + \overline{A} \cdot B$ c) $F_3 = A \cdot B + C \cdot (\overline{A} + B)$

• <u>Example 4</u>:

a)

• For the given Truth Tables, find the logic functions!

i	Α	в	С	F1
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

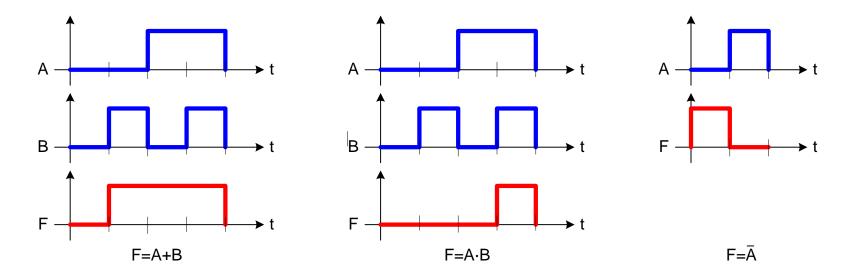
 $F_1(A, B, C) = ?$

<i>b)</i>	i	F2
	0	0
	1	0
	2	1
	3	1
	4	1
	5	1
	6	0
	7	0

F₂ = ?

III. Timing Diagrams

 Representations of Boolean Functions with Timing Diagrams:



III. Timing Diagrams

• <u>Example 5</u>:

• Draw the Timing Diagrams for the following functions:

a)
$$F_1 = A \cdot B + C$$

b) $F_2 = A \cdot \overline{B} + \overline{A} \cdot B$
c) $F_3 = A \cdot B + C \cdot (\overline{A} + B)$

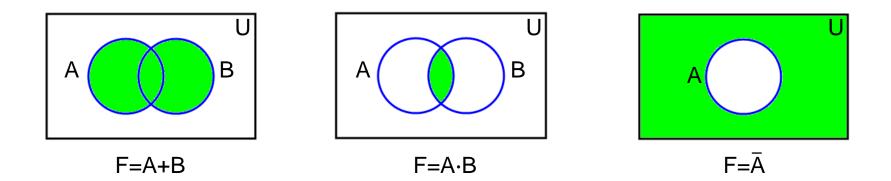
III. Timing Diagrams

• <u>Example 6</u>:

- For the given Timing Diagram:
 - a) Find the logic function and
 - b) Simplify the function and draw the minimized circuit

IV. Venn Diagrams

 Representations of Boolean Functions with Venn Diagrams:



IV. Venn Diagrams

Example 7:

• Draw the Venn Diagrams for the following functions:

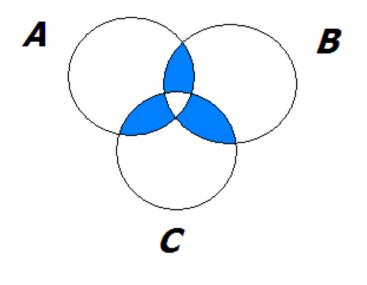
a)
$$F_1 = A \cdot B + C$$

b) $F_2 = A \cdot \overline{B} + \overline{A} \cdot B$
c) $F_3 = A \cdot B + C \cdot (\overline{A} + B)$

IV. Venn Diagrams

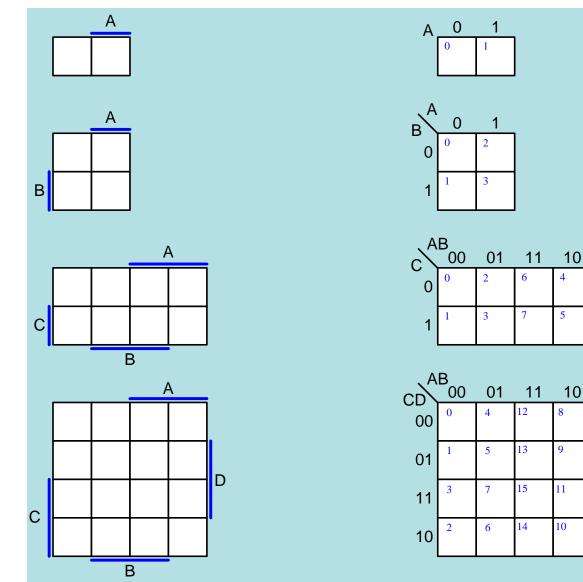
• <u>Example 8</u>:

• For the given Venn Diagram, find the logic function :



F(**A**, **B**, **C**) = ?

V. K-Diagrams



V. K-Diagrams

• Example 9:

• Draw the K-Diagrams for the following functions:

a)
$$F_1 = A \cdot B + C$$

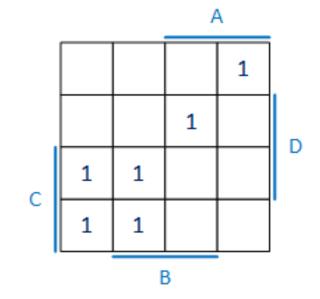
b) $F_2 = A \cdot \overline{B} + \overline{A} \cdot B$
c) $F_3 = A \cdot B + C \cdot (\overline{A} + B)$

V. K-Diagrams

AB

• <u>Example 10</u>:

- For the given K-Diagram, find:
 a) The logic function and
 - b) The Invers function



 $\frac{\mathbf{F}=?}{\mathbf{F}=?}$

Introduction to Digital Technologies and Circuits

Questions?!

mentor.hamiti@universitetiaab.com