AAB University

Faculty of Computer Sciences

Introduction to Digital Technologies and Circuits

Week 1:

Introduction to Computer Science

Asst. Prof. Dr. Mentor Hamiti mentor.hamiti@universitetiaab.com

Introduction to Digital Technologies and Circuit

- An Introduction To Computer Science

MISCONCEPTION 1: Computer science is the study of computers

MISCONCEPTION 2: Computer science is the study of how to write computer programs

MISCONCEPTION 3: Computer science is the study of the uses and applications of computers and software

Introduction to Digital Technologies and Circuit

- An Introduction To Computer Science

Concepts such as:

- Computers,
- Programming languages,
- Software, and
- Applications
are part of the discipline of computer science, but individually they do not capture the richness and diversity of this new field.

Introduction to Digital Technologies and Circuit

- The Definition of Computer Science

Computer science the study of algorithms

, including

1. Their formal and mathematical properties
2. Their hardware realizations
3. Their linguistic realizations
4. Their applications

Introduction to Digital Technologies and Circuito

- The Formal Definition of an Algorithm

Algorithm:
a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time.

The Formal Definition of an Algorithm

. . . a well-ordered collection . . .

STEP 1
STEP 2
STEP 3

STEP N

Do something
Do something
Do something

STOP, you are finished

The Formal Definition of an Algorithm

. . . of unambiguous

and effectively computable operations ...

An unambigiguous operatinon is one that can be understood and carried out directly by the computing agent without needing to be further simplified or explained.

Effectively computable means there exists a computational process that allows the computing agent to complete that operation successfully.

The Formal Definition of an Algorithm

. . . that produces a result . . .

Algorithm must produce a result that is observable to a user, such as a numerical answer, a new object, or a change to its environment.

RESULT or ANSWER ?

The Formal Definition of an Algorithm

. . . and halts in a finite amount of time .

The result must be produced after the execution of a finite number of operations, and we must guarantee that the algorithm eventually reaches a statement that says STOP, you are done or something equivalent.

The Informal Definition of an Algorithm

Algorithm is an ordered sequence of instructions that is guaranteed to solve a specific problem.

It is a list that looks something like this:

STEP 1
STEP 2
STEP 3

Do something
Do something
Do something

The Informal Definition of an Algorithm

The operations used to construct algorithms all belong to one of only three categories:

1. Sequential operations
2. Conditional operations
3. Iterative operations

"Algorithm"

al.go•rithm n. A procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation; broadly: a step-by-step method for accomplishing some task.

Abu Ja'far Muhammad ibn-Musa Al-Khowarizmi

(A.D. 78o-850)

- a famous Persian Mathematician
- a teacher at the Mathematical Institute in Bagdat
- "algebra" (Arabic world al jabr means "reduction")
- step-by-step procedures for doing arithmetic operations, on numbers represented in new decimal system
- XII century, trans. Into Latin, introd. The base 10 HinduArabic numbering system to Europe

Introduction to Digital Technologies and Circuits

- The design of digital systems can be divided into three parts:
- System design
- Logic design
- Circuit design

Digital Systems and Binary Logic

- Digital systems are used extensively in computation and data processing, control systems, communications, and measurement.
- What is the difference between analog and digital systems?
- Why are digital systems capable of greater accuracy than analog systems?
- Why is binary logic used in digital systems?

Binary Logic

- Distinction Between the External and the Internal Representation of Information

Why Binary numbers?

- Computers are made of millions of tiny switches.
- The switches have only two states - OFF \& ON.
- $\mathrm{OFF}=\mathrm{o} \quad \& \quad \mathrm{ON}=1$
- So binary numbers is the language of all modern computers.

Binary Logic

- What is Information?
- Numbers
- Binary numbers
- Text and Symbols - ASCII, UNICODE
- Sound
- Binary signals
- Images
- Pixels
- Animations

Representations of Numbers

Binary circuits: Electronic devices are cheapest and function most reliably if they assume only two states.

Representations of Numbers

- The three-light system:
- Has eight possible combinations of on and off.
- Could be used to indicate the numbers $\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}$, 5, 6, 7 .

$$
\begin{array}{ll}
0=000 & 4=100 \\
1=001 & 5=101 \\
2=010 & 6=110 \\
3=011 & 7=111
\end{array}
$$

Representations of Numbers

The Decimal System: $\mathbf{B = 1 0}$
$(0,1,2,3,4,5,6,7,8,9)$
$175=1^{*} 100+7^{*} 10+5$
$175=1^{*} 10^{2}+7^{*} 10^{1}+5^{*} 10^{0}$

The Binary System:
B=2
$(0,1)$
$1011=1^{*} 2^{3}+0^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}$

$$
=1^{*} 8+0^{*} 4+1^{*} 2+1=11
$$

$(1011)_{2}=(11)_{10}$

Representations of Symbols and Text

- To store any kind of information in the computer's memory, it must first be transformed into a binary numeric form.
- Symbols and Text
- Includes characters, punctuation, symbols representing numbers.
- Each symbol can be assigned a numeric value.

Two standardized sets of codes for symbols:

ASCII: American Standard Code for Information Interchange. Can represent 255 different characters/symbols.

UNICODE: More modern code that can represent 65536 characters/symbols (useful for other languages such as Arabic, Chinese).

Representations of Symbols and Text

Letters:
ASCII - (American Standard Code for Information
Interchange)

Letter	Decimal Representation	8 bit Binary Representation
A	65	01000001
B	66	01000010
C	67	01000011
D	68	01000100
E	69	01000101
G	71	

Representations of Sound

Analog Signals:

Representations of Sound

Binary Signals:

Signal
Value

Representations of Images

Pictures:

- A picture must be transformed into numeric form before it can be stored or manipulated by the computer.
- Each picture is subdivided into a grid of squares called pixels (picture elements).
- If the squares are small enough, we will see a reasonably good image.

Representations of Images

- In a picture with only black and white pixels:

010101010101010101010110101101001001000111110000 011010101010101010101001011010010110010100000110 100101010101010101010110110001010000101001010100 101101101011011010110101100110010110100010001001 011010010110100101101010001001100100101101010010 100101101100101011010101110110011001010010101100 011010010011010110010010001001100110101010010001 010101101100101100100101110110011001010100100101 010101010101010011011010001001100010100001010100 101010101010101100010010110010001101001110100001 010101010101010001000101000101101000010000001101 110110101010010100110100011010010011100101101000 101001010100100010100101100101101100001010000010 101011010001001001001001011110101011010100101100 101010000100010010010111110101111100101001001001 010100101001000100101010101110101011010010010000 101001000010011001101111101011101010101000100101 010010010100100011011000011110111011010110101000 00010000000100110010011111111110110111000000010 101000101010010011011000010101011101000010101000 00001000010010110101001111111111111011101000101 00100010100110101010010001110111110100010010000 010010010110001001001001111011110101101100100101 100100100000111010010010010111111111011001001000

Representations of Images

- The baby's picture with smaller pixels - more detail.

- The baby's picture with 4 levels of gray.

Representations of Images

- Photographic quality images have a gray-scale.
- Several shades between black and white are used.
- 4 level gray-scale means 4 shades are used.
- Each pixel needs 2 bits:
- oo - represents white
- o1-represents light gray
- 10 - represents dark gray
- 11 - represents black
- 256 level gray scale means
- 8 bits per pixel are needed for 256 shades of gray

256 levels of gray

Representations of Images

- Color Images with RGB

- Uses three values per pixel
- One number is used for each of the amounts of Red, Green and Blue on the computer screen.
- The amounts of Red, Green, and Blue combine like light or paint to create other colors

Full color image

Introduction to Digital Technologies and Circuil

- Reading:
- Chapter 1

Introduction to Digital Technologies and Circuits

- Questions?!

mentor.hamiti@universitetiaab.com

