AAB University
 Faculty of Computer Sciences

Introduction to Digital Technologies and Circuits

Week 3:

Binary Arithmetic and Codes

Asst. Prof. Dr. Mentor Hamiti
mentor.hamiti@universitetiaab.com

Last Time

- Number Systems
- Not weighted Number Systems
- Weighted Number Systems
- Conversions between number systems
- Direct conversions between number systems
- Binary Arithmetic

Codes

Binary Arithmetic

- Binary Arithmetic:
- Addition
- Subtraction
- Multiply
- Divide
- Example:

$$
X_{2}=\frac{F 3 A_{16}-2112_{8}}{130_{4}}
$$

Binary Arithmetic

- Addition: $0+0=0$

$$
\begin{aligned}
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0 \quad \text { carry } 1
\end{aligned}
$$

- Example: $(13)_{10}+(\mathbf{1 1})_{10}=$?

$$
\begin{aligned}
& 1111 \\
& 13_{10}=1101 \\
& 11_{10}=\frac{1011}{11000}=24_{10}
\end{aligned}
$$

Binary Arithmetic

- Subtraction: $0-0=0$

$$
\begin{array}{ll}
0-1=1 \quad \text { borrow } 1 \\
1-0=1 \\
1-1=0 &
\end{array}
$$

- Example: (29) ${ }_{10}-(19)_{10}=$?

1
11101
-10011
1010

Binary Arithmetic

- Multiply: $0 * 0=0$
$0 * 1=0$
$1 * 0=0$
$1 * 1=1$
- Example: $(\mathbf{1 3})_{10} *(\mathbf{1 1})_{10}=$?

1101
$\frac{1011}{1101}$
1101
0000
$\frac{1101}{10001111}=143_{10}$

Binary Arithmetic

" Divide:

$$
\begin{aligned}
& 0: 0=? \\
& 0: 1=0 \\
& 1: 0=? \\
& 1: 1=1
\end{aligned}
$$

- Example: $(\mathbf{1 4 5})_{10}:(\mathbf{1 1})_{10}=$?

1011 | 10010001 |
| :---: |
| $\frac{1011}{1110}$ |
| $\frac{1011}{1101}$ |
| $\frac{1011}{10}$ |

Octal Arithmetic ;)

- Example:

$$
\begin{array}{r}
102 \\
-\quad 27 \\
\hline 53
\end{array}
$$

$$
144: 31=4
$$

Hexadecimal Arithmetic :)

- Example:

C E D E
$+\quad$ D E F
D C C D
---:
$-\quad$ A1 B 2
E F E

	B
$*$	C
*	
7	5
	8

$$
\begin{aligned}
& \mathrm{B} \text { C : A = } 12 \cdot \mathrm{C} \text { C } \\
& \frac{\mathrm{A}}{1} \mathrm{C} \\
& \frac{1}{1} 4 \\
& \frac{8}{8} \\
& \frac{78}{8} \\
& \frac{1}{8}
\end{aligned}
$$

Binary Arithmetic

- Example:

$$
X_{2}=\frac{F 3 A_{16}-2112_{8}}{130_{4}}
$$

?

Binary Codes

- Although computers work internally with binary numbers, the input-output equipment generally uses decimal numbers. Because most logic circuits only accept two-valued signals, the decimal numbers must be coded in terms of binary signals.
- In the simplest form of binary code, each decimal digit is replaced by its binary equivalent.
- Example: $(937.25)=$?

Binary Codes

- Binary codes are codes which are represented in binary system with modification from the original ones.
- Weighted Binary Codes
- Weighted binary codes are those which obey the positional weighting principles, each position of the number represents a specific weight. The binary counting sequence is an example.
- Non Weighted Codes
- Non weighted codes are codes that are not positionally weighted. That is, each position within the binary number is not assigned a fixed value.

Weighted Binary Codes

- 8421 Code/BCD Code
- The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is possible to assign weights to the binary bits according to their positions. The weights in the BCD code are $8,4,2,1$.
- Example:
- The bit assignment 1001, can be seen by its weights to represent the decimal 9 because:

$$
1 \mathrm{x} 8+0 \times 4+0 \times 2+1 \mathrm{x} 1=9
$$

Weighted Binary Codes

- Binary Codes for Decimal Digits:

Decimal	$\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	$\mathbf{5 2 1 1}$	Excess-3
0	0000	0000	0000	0011
1	0001	0001	0001	0100
2	0010	0010	0011	0101
3	0011	0011	0101	0110
4	0100	0100	0111	0111
5	0101	1011	1000	1000
6	0110	1100	1010	1001
7	0111	1101	1100	1010
8	1000	1110	1110	1011
9	1001	1111	1111	1100

Weighted Binary Codes

- 2421 Code

- This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in 4-bit form and the total four bits weight is $2+4+2+1=9$. Hence the 2421 code represents the decimal numbers from o to 9 .
- 5211 Code
- This is a weighted code, its weights are $5,2,1$ and 1. A decimal number is represented in 4-bit form and the total four bits weight is $5+2+1+1=9$. Hence the 5211 code represents the decimal numbers from o to 9 .

Non Weighted Binary Codes

- Excess-3 Code
- Excess-3 is a non weighted code used to express decimal numbers. The code derives its name from the fact that each binary code is the corresponding 8421 code plus oo11(3).
- Example:

1000 of $8421=1011$ in Excess-3

Non Weighted Binary Codes

- Construct a 5-2-2-1 weighted code for decimal digits.
- What numbers does $\mathbf{1 1 1 0} 0110$ represent in this code?

Non Weighted Binary Codes

- Construct a 5-4-1-1 weighted code for decimal digits?!!

Non Weighted Binary Codes

- Write the decimal number 356176 using the following codes:
a) $\mathbf{N B C D}$
b) $\mathbf{6 - 3 - 1 - 1}$
c) $\mathbf{4 - 3 - 2 - 1}$
d) $\mathbf{8 - 4}-(-2)-(-1)$
e) $\mathbf{5 - 2 - 1 - 1}$

Non Weighted Binary Codes

- What number does 000110010111 represent in the code 6-2-2-1 ?

Non Weighted Binary Codes

- Gray Code
- The gray code belongs to a class of codes called minimum change codes, in which only one bit in the code changes when moving from one code to the next. The Gray code is non-weighted code, as the position of bit does not contain any weight. The gray code is a reflective digital code which has the special property that any two subsequent numbers codes differ by only one bit. This is also called a unit-distance code. In digital Gray code has got a special place.

Non Weighted Binary Codes

- Gray Code

Decimal Number	Binary Code	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Other Codes

- Sequential Codes
- Cyclic Codes
- Optimal Codes
- Error Detecting and Correction Codes
- Alphanumeric Codes

Alphanumeric Codes

- Many applications of computers require the processing of data which contains numbers, letters, and other symbols such as punctuation marks.
- In order to transmit such alpha numeric data to or from a computer or store it internally in a computer, each symbol must be represented by a binary code.
- ASCII code
- American Standard Code for Information Interchange
- UNICODE
- More modern code that can represent 65536 characters/symbols
- useful for other languages such as Arabic, Chinese...

ASCII code

Dec	Hex	Char									
0	00	Null	32	20	Space	64	40	e	96	60	,
1	01	Start of heading	33	21	$!$	65	41	A	97	61	a
2	02	Start of text	34	22	${ }^{\prime \prime}$	66	42	B	98	62	b
3	03	End of text	35	23	fi	67	43	C	99	63	c
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	\%	69	45	E	101	65	e
6	06	Acknowledge	38	26	\&	70	46	F	102	66	f
7	07	Audible bel	39	27	,	71	47	G	103	67	g
8	08	Backspace	40	28	1	72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	QA	Line feed	42	2 A	z	74	4.	J	106	68.	1
11	OB	Vertical tab	43	2B	+	75	4 B	K	107	6B	k
12	OC	Form teed	44	2 C	,	76	4 C	L	108	6 C	1
13	OD	Corriage return	45	2D	-	77	4D	M	109	6D	m
14	OE	Shitt out	46	2 E	.	78	4 E	N	110	6 E	n
15	OF	Shift in	47	2 F	/	79	$4 F$	\bigcirc	111	6 F	0
16	10	Data Ink escape	48	30	0	80	50	P	112	70	p
17	11.	Device cortrol 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	3	115	73	s
20	14	Device control 4	52	34	4	84	54	T	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans. block	55	37	7	87	57	U	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	Y
26	18.	Substitution	58	3 A	:	90	5.	2	122	7 A	z
27	18	Escape	59	3B	;	91	5 B	[123	7 B	(
28	1 C	Fie separator	60	3 C	<	92	5 C	1	124	7 C	1
29	1 D	Group separator	61	3 D	$=$	93	5D]	125	7 D)
30	1 E	Record separator	62	3 E	>	94	5 E	\wedge	126	7E	~
31	1 F	Unit separator	63	3 F	2	95	5 F		127	7 F	\square

Alphanumeric Codes

- Give the ASCII code for your name ?!

Introduction to Digital Technologies and Circuits

- Questions?!

