

AAB University

Faculty of Computer Sciences

Introduction to Digital Technologies and Circuits

Week 3:

Binary Arithmetic and Codes

Asst. Prof. Dr. **Mentor Hamiti** mentor.hamiti@universitetiaab.com

Last Time

- Number Systems
 - Not weighted Number Systems
 - Weighted Number Systems
- Conversions between number systems
- Direct conversions between number systems

Today

Binary Arithmetic

Codes

Binary Arithmetic

- Binary Arithmetic:
 - Addition
 - Subtraction
 - Multiply
 - Divide

Example:

$$X_2 = \frac{F3A_{16} - 2112_8}{130_4}$$

Binary Arithmetic

• Addition:
$$0+0=0$$

 $0+1=1$
 $1+0=1$
 $1+1=0$ carry 1

• <u>Example</u>: $(13)_{10} + (11)_{10} = ?$

$$1111$$

$$13_{10} = 1101$$

$$11_{10} = 1011$$

$$11000 = 24_{10}$$

• Subtraction: 0-0=00-1=1 borrow 1 1-0=11-1=0

• <u>Example</u>: $(29)_{10} - (19)_{10} = ?$

 $\begin{array}{r}
 1 \\
 11101 \\
 -10011 \\
 1010
 \end{array}$

Binary Arithmetic

Multiply: 0*0=0 0*1=0 1*0=0

• Example:
$$(13)_{10} * (11)_{10} = ?$$

1101
1011
1101
1101
0000
1101
10001111 = 143₁₀

Binary Arithmetic

Divide: 0:0 = ?

$$0:1=0$$

 $1:0=?$
 $1:1=1$

• Example:
$$(145)_{10}$$
 : $(11)_{10}$ = ?

$$\begin{array}{r} 1101 \\
1011 \\
10010001 \\
\underline{1011} \\
1110 \\
\underline{1011} \\
1101 \\
\underline{1011} \\
1011 \\
10
\end{array}$$

• Example:

• <u>Example</u>:

$$X_2 = \frac{F3A_{16} - 2112_8}{130_4}$$

Binary Codes

- Although computers work internally with binary numbers, the input-output equipment generally uses decimal numbers. Because most logic circuits only accept two-valued signals, the decimal numbers must be coded in terms of binary signals.
 - In the simplest form of binary code, each decimal digit is replaced by its binary equivalent.
- Example: (937.25) = ?

Binary Codes

- Binary codes are codes which are represented in binary system with modification from the original ones.
- Weighted Binary Codes
 - Weighted binary codes are those which obey the positional weighting principles, each position of the number represents a specific weight. The binary counting sequence is an example.
- Non Weighted Codes
 - Non weighted codes are codes that are not positionally weighted. That is, each position within the binary number is not assigned a fixed value.

8421 Code/BCD Code

- The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is possible to assign weights to the binary bits according to their positions. The weights in the BCD code are 8,4,2,1.
- <u>Example</u>:
 - The bit assignment 1001, can be seen by its weights to represent the decimal 9 because:

1x8 + 0x4 + 0x2 + 1x1 = 9

Binary Codes for Decimal Digits:

Decimal	8421	2421	5211	Excess-3
0	0000	0000	0000	0011
1	0001	0001	0001	0100
2	0010	0010	0011	0101
3	0011	0011	0101	0110
4	0100	0100	0111	0111
5	0101	1011	1000	1000
6	0110	1100	1010	1001
7	0111	1101	1100	1010
8	1000	1110	1110	1011
9	1001	1111	1111	1100

• 2421 Code

• This is a weighted code, its weights are 2, 4, 2 and 1. A decimal number is represented in 4-bit form and the total four bits weight is 2 + 4 + 2 + 1 = 9. Hence the 2421 code represents the decimal numbers from 0 to 9.

• 5211 Code

• This is a weighted code, its weights are 5, 2, 1 and 1. A decimal number is represented in 4-bit form and the total four bits weight is 5 + 2 + 1 + 1 = 9. Hence the 5211 code represents the decimal numbers from 0 to 9.

Excess-3 Code

- Excess-3 is a **non weighted** code used to express decimal numbers. The code derives its name from the fact that each binary code is the corresponding 8421 code plus 0011(3).
- <u>Example</u>:

1000 of 8421 = 1011 in Excess-3

- 協
- Construct a **5-2-2-1** weighted code for decimal digits.
 - What numbers does **1110 0110** represent in this code?

Construct a 5-4-1-1 weighted code for decimal digits?!!

- Write the decimal number **3 5 6 1 7 6** using the following codes:
- a) NBCD
- b) **6-3-1-1**
- c) 4-3-2-1
- d) 8-4-(-2)-(-1)

e) **5-2-1-1**

• What number does **0001 1001 0111** represent in the code **6-2-2-1**?

Gray Code

• The gray code belongs to a class of codes called minimum change codes, in which only one bit in the code changes when moving from one code to the next. The Gray code is non-weighted code, as the position of bit does not contain any weight. The gray code is a reflective digital code which has the special property that any two subsequent numbers codes differ by only one bit. This is also called a unit-distance code. In digital Gray code has got a special place.

Gray Code

Decimal Number	Binary Code	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Other Codes

- Sequential Codes
- Cyclic Codes
- Optimal Codes
- Error Detecting and Correction Codes
- Alphanumeric Codes

Alphanumeric Codes

- Many applications of computers require the processing of data which contains numbers, letters, and other symbols such as punctuation marks.
 - In order to transmit such alpha numeric data to or from a computer or store it internally in a computer, each symbol must be represented by a binary code.

• **ASCII** code

• American Standard Code for Information Interchange

UNICODE

- More modern code that can represent 65536 characters/symbols
- useful for other languages such as Arabic, Chinese...

ASCII code

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	
1	01	Start of heading	33	21	1	65	41	A	97	61	a
2	02	Start of text	34	22		66	42	в	98	62	b
3	03	End of text	35	23	#	67	43	с	99	63	c
4	04	End of transmit	36	24	ş	68	44	D	100	64	d
5	05	Enquiry	37	25	\$	69	45	E	101	65	e
6	06	Acknowledge	38	26	6	70	46	F	102	66	£
7	07	Audible bell	39	27	÷.	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	DA	Line feed	42	2A	•	74	4A	J	106	6A.	3
11	OB	Vertical tab	43	2B	+	75	4 B	K	107	6B	k
12	OC	Form feed	44	20		76	4C	L	108	6C	1
13	OD	Carriage return	45	20	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	48	N	110	6E	n
15	OF	Shift in	47	21	1	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	3
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans. block	55	37	7	87	57	U	119	77	w
24	18	Cancel	56	38	8	88	58	x	120	78	×
25	19	End of medium	57	39	9	89	59	Y	121	79	y
26	14	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	18	Escape	59	38	2	91	5B	t	123	7B	(
28	10	File separator	60	3C	<	92	5C	1	124	7C	1
29	10	Group separator	61	30	=	93	5D	1	125	70	3
30	18	Record separator	62	38	>	94	52	*	126	7E	~
31	1F	Unit separator	63	38	2	95	SF		127	7F.	

Alphanumeric Codes

• Give the ASCII code for your name **?!**

Introduction to Digital Technologies and Circuits

Questions?!

mentor.hamiti@universitetiaab.com