AAB University
 Faculty of Computer Sciences

Introduction to Digital Technologies and Circuits

Week 13:

Registers and Counters

Asst. Prof. Dr. Mentor Hamiti mentor.hamiti@universitetiaab.com

Registers and Counters

- A circuit with flip-flops is considered a sequential circuit even in the absence of combinational logic.
- Circuits that include flip-flops are usually classified by the function they perform. Two such circuits are:
- Registers and
- Counters

Registers and Counters

- Register
- is a group of flip-flops. Its basic function is to hold information within a digital system so as to make it available to the logic units during the computing process. However, a register may also have additional capabilities associated with it.
- Counter
- is essentially a register that goes through a predetermined sequence of states. The gates in the counter are connected in such a way as to produce the prescribed sequence of binary states.

Counters

- Counters are frequently used in computers and other digital systems:
- Event Counting,
- Frequency Division,
- Timing and Control Operations
- Like all other sequential logic circuits, counter circuits can be classified into two categories: asynchronous and synchronous.
- In synchronous counters all memory elements are simultaneously triggered by a clock, whereas in asynchronous counters the output of each memory element activates the next memory element.
- Many types of counters are used in practice:
- In some cases they count in pure binary; in other cases the count may differ considerably from straight binary (e.g., decade, BCD counters, MOD $<2^{\mathrm{N}}$ counters, est.).

Asynchronous Counters

Analysis of Asynchronous Counters

- Example 1:

- Timing Diagrams...

Synchronous Counters

- A synchronous counter connects all of its flip-flop clock inputs to the same common CLK signal, so that all of the flip-flop outputs change at the same time!
- after only $\mathrm{t}_{\mathrm{F}} \mathrm{ns}$ of delay $\left(\mathrm{t}_{\mathrm{F}}\right.$ is the propagation delay from input to output of the flip-flop)

Design of Synchronous Counters

Example 2:

- Design a synchronous BCD counter described with the following state diagram:

- Using:
a) JK - Flip-Flops
b) T-Flip-Flops
c) D - Flip-Flops

Design of Synchronous Counters

Example 3:

- Design the counter with the following predetermined sequence of states:

$001 \quad 011 \quad 101 \quad 111$

- Increment other states to the next one!
- Use Flip-Flops:
a) JK - Flip-Flops
b) T - Flip-Flops
c) D - Flip-Flops
and basic logic gates:

Counters with MOD $<2^{N}$

- MOD $6<2^{\mathrm{N}}$

Introduction to Digital Technologies and Circuits

- Questions?!

mentor.hamiti@universitetiaab.com

