
O b j e c t O r i e n t e d P r o g r a m m i n g

Week 4:

Introduction to Classes and Objects

Asst. Prof. Dr. Mentor Hamiti

mentor.hamiti@universitetiaab.com

A A B U n i v e r s i t y

Faculty of Computer Sciences

 Structure of a program

 Variables

 Memory Concepts

 Arithmetic

 Decision Making

 ……………………….

 2

 Last Time?!

 Introduction to Classes and Objects

 Defining a Class with a Member Function

 Defining a Member Function with a Parameter

 Data Members, set Functions and get Functions

 Initializing Objects with Constructors

 Placing a Class in a Separate File for Reusability

3

 Today

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

4

 The basic concepts of Object Oriented Programming
are Classes and Objects

 Typically, programs written in C++ are composed by
one function main and one or more classes

 Each Class contains:

• data members and

• member functions

Introduction

http://www.cplusplus.com/

 Introduction to Classes and Objects

 Defining a Class with a Member Function

 Defining a Member Function with a Parameter

 Data Members, set Functions and get Functions

 Initializing Objects with Constructors

 Placing a Class in a Separate File for Reusability

5

 Object Oriented Programming

6

Example 1

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

7

 The class definition begins with the keyword class
followed by the class name GradeBook

• By convention, the name of a user-defined class begins with
a capital letter, and for readability, each subsequent word in
the class name begins with a capital letter

 Every class’s body is enclosed in a pair of left and right
braces { and }

 The class definition terminates with a semicolon ;

Defining a Class with a Member Function

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

8

 Function main is always called automatically when
you execute a program

 Most functions do not get called automatically

 You must call member function displayMessage
explicitly to tell it to perform its task

 The access-specifier label public: contains the
keyword public is an access specifier

• Indicates that the function is “available to the public”
that is, it can be called by other functions in the program
(such as main), and by member functions of other classes

• Access specifiers are always followed by a colon (:).

Defining a Class with a Member Function

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

9

 Each function in a program performs a task and may
return a value when it completes its task

 Keyword void to the left of the function name
displayMessage is the function’s return type

 Indicates that displayMessage will not return any data to
its calling function when it completes its task

 By convention, function names use a lowercase first letter

Defining a Class with a Member Function

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

10

 The parentheses after the member function name indicate
that it is a function

 Empty parentheses indicate that a member function does
not require additional data to perform its task

 The first line of a function definition is commonly called
the function header

 Every function’s body is delimited by braces { and }

 The function body contains statements that perform the
function’s task

Defining a Class with a Member Function

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

11

 Typically, you cannot call a member function of a
class until you create an object of that class

 First, create an object of class GradeBook called
myGradeBook

• The variable’s type is GradeBook

• The compiler does not automatically know what type
GradeBook is—it’s a user-defined type

• Tell the compiler what GradeBook is by including the
class definition

• Each class you create becomes a new type that can be
used to create objects

Testing Class GradeBook

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

12

 Create an Object of class GradeBook called myGradeBook

 Call the member function displayMessage- by using
variable myGradeBook followed by the dot operator
. the function name displayMessage and an empty
set of parentheses ()

 Causes the displayMessage function to perform its task

Testing Class GradeBook

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

13

 In the UML, each class is modeled
in a UML class diagram as a
rectangle with three compartments:

• The top compartment contains the class’s name centered
horizontally and in boldface type

• The middle compartment contains the class’s attributes,
which correspond to data members in C++

• Currently empty, because class GradeBook does not yet have
any attributes

• The bottom compartment contains the class’s operations,
which correspond to member functions in C++

 The plus sign + in front of the operation name indicates that
displayMessage is a public operation in the UML

UML Class Diagram for Class GradeBook

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Introduction to Classes and Objects

 Defining a Class with a Member Function

 Defining a Member Function with a Parameter

 Data Members, set Functions and get Functions

 Initializing Objects with Constructors

 Placing a Class in a Separate File for Reusability

14

 Object Oriented Programming

15

Example 2

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

16

 A variable of type string represents a string of
characters

 A string is actually an object of the C++ Standard
Library class string

 Defined in header file <string> and part of namespace std

 For now, you can think of string variables like variables of
other types such as int

Defining a Member Function with a Parameter

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

17

 Library function getline reads a line of text into a string

 The function call getline(cin, nameOfCourse) reads
characters (including the space characters that separate the
words in the input) from the standard input stream object
cin (the keyboard) until the newline character is encountered

 When Enter is pressed while entering data, a newline is
inserted in the input stream

 The <string> header file must be included in the
program to use function getline

Defining a Member Function with a Parameter

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

18

 Functions with parameters requires data to perform
its task

• The parameter list may contain any number of parameters,
including none at all to indicate that a function does not
require any parameters

• Each parameter must specify a type and an identifier

• A function can specify multiple parameters by separating
each parameter from the next with a comma

• The number and order of arguments in a function call must
match the number and order of parameters in the parameter
list of the called member function’s header

Defining a Member Function with a Parameter

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

19

 The UML has its own data types similar to those of C++

 The UML models a parameter by listing the parameter
name, followed by a colon and the parameter type in the
parentheses following the operation name

 The UML is language independent

• It’s used with many different programming languages,
so its terminology does not exactly match that of C++

UML Class Diagram for Class GradeBook (Ex.2)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Introduction to Classes and Objects

 Defining a Class with a Member Function

 Defining a Member Function with a Parameter

 Data Members, set Functions and get Functions

 Initializing Objects with Constructors

 Placing a Class in a Separate File for Reusability

20

 Object Oriented Programming

21

 Variables declared in a function definition’s body are
known as local variables and can be used only from the
line of their declaration in the function to the closing
right brace } of the block in which they’re declared

• A local variable must be declared before it can be used in a
function

• A local variable cannot be accessed outside the function in
which it’s declared

• When a function terminates, the values of its local variables
are lost

Data Members, set Functions and get Functions

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

22

 An object has attributes that are carried with it as it’s
used in a program

• Such attributes exist throughout the life of the object

• A class normally consists of one or more member functions
that manipulate the attributes that belong to a particular
object of the class

 Attributes are represented as variables in a class
definition

• Such variables are called data members and are declared
inside a class definition but outside the bodies of the class’s
member-function definitions

 Each object of a class maintains its own attributes in
memory

Data Members, set Functions and get Functions

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

23

 A variable that is declared in the class definition but
outside the bodies of the class’s member-function
definitions is a data member

 Every instance (i.e., object) of a class contains each of
the class’s data members

 A benefit of making a variable a data member is that
all the member functions of the class can manipulate
any data members that appear in the class definition

Data Members, set Functions and get Functions

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

24

Example 3

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

25

Example 3 (cont.)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

26

 Most data-member declarations appear after the
access-specifier label private:

 Like public, keyword private is an access specifier

 Variables or functions declared after access specifier
private (and before the next access specifier) are accessible
only to member functions of the class for which they’re
declared

 The default access for class members is private so all
members after the class header and before the first
access specifier are private

 The access specifiers public and private may be repeated,
but this is unnecessary and can be confusing

Data Members, set Functions and get Functions

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

27

 Declaring data members with access specifier private is
known as data hiding

 When a program creates an object, its data members
are encapsulated (hidden) in the object and can be
accessed only by member functions of the object’s class

 Classes often provide public member functions to allow
clients of the class to set (i.e., assign values to) or get (i.e.,

obtain the values of) private data members

• These member function names need not begin with set or
get, but this naming convention is common

 Set functions are also sometimes called mutators (because
they mutate, or change, values), and get functions are also
sometimes called accessors (because they access values)

Data Members, set Functions and get Functions

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

28

 UML class diagram for class GradeBook with a private
courseName attribute and public operations
setCourseName, getCourseName and displayMessage

 The UML represents data members as attributes by listing
the attribute name, followed by a colon and the attribute
type

UML Class Diagram for Class GradeBook (Ex.3)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Introduction to Classes and Objects

 Defining a Class with a Member Function

 Defining a Member Function with a Parameter

 Data Members, set Functions and get Functions

 Initializing Objects with Constructors

 Placing a Class in a Separate File for Reusability

29

 Object Oriented Programming

30

 Each class can provide one or more constructors that
can be used to initialize an object of the class when the
object is created

 A constructor is a special member function that must
be defined with the same name as the class, so that
the compiler can distinguish it from the class’s other
member functions

 An important difference between constructors and other
functions is that constructors cannot return values, so
they cannot specify a return type (not even void)

 Normally, constructors are declared public

Initializing Objects with Constructors

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

31

 C++ automatically calls a constructor for each object
that is created, which helps ensure that objects are
initialized properly before they’re used in a program

 The constructor call occurs when the object is created

 If a class does not explicitly include constructors, the
compiler provides a default constructor with no
parameters

Initializing Objects with Constructors

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

32

Example 4

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

33

Example 4 (cont.)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

34

 A constructor specifies in its parameter list the data it
requires to perform its task

 When you create a new object, you place this data in the
parentheses that follow the object name

 Any constructor that takes no arguments is called a
default constructor

 A class gets a default constructor in one of several ways:

• The compiler implicitly creates a default constructor in every
class that does not have any user-defined constructors

• You explicitly define a constructor that takes no arguments

• If you define any constructors with arguments, C++ will not
implicitly create a default constructor for that class

Initializing Objects with Constructors

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

35

 Like operations, the UML models constructors in the
third compartment of a class in a class diagram

 To distinguish a constructor from a class’s operations,
the UML places the word “constructor” between
guillemets (« and ») before the constructor’s nam

UML Class Diagram for Class GradeBook (Ex.4)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Introduction to Classes and Objects

 Defining a Class with a Member Function

 Defining a Member Function with a Parameter

 Data Members, set Functions and get Functions

 Initializing Objects with Constructors

 Placing a Class in a Separate File for Reusability

36

 Object Oriented Programming

37

 One of the benefits of creating class definitions is that,
when packaged properly, our classes can be reused by
programmers—potentially worldwide

 Programmers who wish to use our GradeBook class
cannot simply include the file from another program

 Function main begins the execution of every program, and
every program must have exactly one main function

 When building an object-oriented C++ program, it’s customary

to define reusable source code (such as a class) in a file that by

convention has a .h filename extension—known as a header

 Programs use #include preprocessing directives to include header

files and take advantage of reusable software components

Placing a Class in a Separate File for Reusability

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

38

Example 5 (cont.)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

39

Example 5

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

40

 A # include directive instructs the C++ preprocessor
to replace the directive with a copy of the contents of
GradeBook.h before the program is compiled

 When the source-code file is compiled, it now contains
the GradeBook class definition (because of the #include),
and the compiler is able to determine how to create
GradeBook objects and see that their member
functions are called correctly

 Now that the class definition is in a header file (without

a main function), we can include that header in any
program that needs to reuse our GradeBook class

Placing a Class in a Separate File for Reusability

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

41

 Notice that the name of the GradeBook.h header file in
is enclosed in quotes " " rather than angle brackets < >

• Normally, a program’s source-code files and user-defined
header files are placed in the same directory

• When the preprocessor encounters a header file name in
quotes, it attempts to locate the header file in the same
directory as the file in which the #include directive appears

• If the preprocessor cannot find the header file in that
directory, it searches for it in the same location(s) as the
C++ Standard Library header files

• When the preprocessor encounters a header file name in
angle brackets (e.g., <iostream>), it assumes that the header
is part of the C++ Standard Library and does not look in the
directory of the program that is being preprocessed

Placing a Class in a Separate File for Reusability

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

42

 Object Oriented Programming

 Questions?!

mentor.hamiti@universitetiaab.com

