
O b j e c t O r i e n t e d P r o g r a m m i n g

Week 11:

P o l i m o r p h i s m

Asst. Prof. Dr. Mentor Hamiti

mentor.hamiti@universitetiaab.com

A A B U n i v e r s i t y

Faculty of Computer Sciences

 Inheritance

 Base & Derived Classes

 Access Control and Type of Inheritance

 Constructor and Inheritance

 Overriding Base Class Functions

 Virtual Base Class

2

 Last Time?!

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Introduction

 Base & Derived Classes

 Polymorphism

 Pointers to base class

 Virtual members

 Abstract base classes

3

 Today

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

4

 Inheritance is a fundamental requirement of oriented
programming

 It allows us to create new classes by refining existing
classes

 Essentially a derived class can inherit data members
of a base class

• The behaviour of the derived class can be refined by
redefining base class member functions or adding new
member function

• A key aspect of this is polymorphism where a
classes behaviour can be adapted at run-time

Base classes and derived classes

©Inheritance and Polymorphism, M Spann

5

 There are many examples in real life of how a (base)
class can be refined to a set of (derived) classes

 Example:

A Polygon class can be refined to be a Quadrilateral
which can be further refined to be a Rectangle

• A Quadrilateral IS-A Polygon

• A Rectangle IS-A Quadrilateral

Base classes and derived classes

©Inheritance and Polymorphism, M Spann

6

 Example:

Base classes and derived classes

©Inheritance and Polymorphism, M Spann

Base class Derived class

Shape Triangle, Circle,

Rectangle

Bank Account Current, Deposit

Student Undergraduate,

Postgaduate

Vehicle Car, Truck, Bus

Filter Low-pass, Band-pass,

High-pass

7

 Example: A BankAccount class

• An BankAccount base class models basic information
about a bank account

• Account holder

• Account number

• Current balance

• Basic functionality

• Withdraw money

• Deposit money

Base classes and derived classes

©Inheritance and Polymorphism, M Spann

Class member Can be accessed from

private public member

functions of same class

protected public member

functions of same class

and derived classes

public Anywhere

 Introduction

 Base & Derived Classes

 Polymorphism

8

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

9

 Polymorphism is the key concept in Object
Oriented Programming

 Polymorphism literally means many forms

 Essentially we are able to get many different types of
object behaviour from a single reference type

• This enables us to write easily extensible applications

Polymorphism and Object Oriented Programming

©Inheritance and Polymorphism, M Spann

10

 The ability to declare functions/methods as virtual
is one of the central elements of Polymorphism in
C++

 Polymorphism: from the Greek

 “having multiple forms”

• In programming languages, the ability to assign a
different meaning or usage to something in different
contexts

• The same method can be called on different objects

• They may respond to it in different ways

Polimorphism

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

11

 Example: In a computer game that simulates the
movement of animals we can send „move‟
commands to different types of animal

 We send the commands via an animal reference
which is the base class for the different animal types

• But each type behaves differently once it receives the
command

• Such an approach leads to a readily extendable
application

Polymorphism

©Inheritance and Polymorphism, M Spann

12

Polymorphism

©Inheritance and Polymorphism, M Spann

animal Move

Application

13

 Polymorphism is implemented through references
to objects

 We can assign base class object references to any
derived class object

Polymorphism

©Inheritance and Polymorphism, M Spann

 Introduction

 Base & Derived Classes

 Polymorphism

 Pointers to base class

14

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

15

 One of the key features of class inheritance is that a
pointer to a derived class is type-compatible with a
pointer to its base class

 Polymorphism is the art of taking advantage of
this simple but powerful and versatile feature

Pointers to base class

http://www.cplusplus.com/

16

 Example 1:

Pointers to base class

http://www.cplusplus.com/

17

 Example 1:

• Function main declares two pointers to Polygon (named ppoly1
and ppoly2). These are assigned the addresses of rect and trgl,
respectively, which are objects of type Rectangle and Triangle.
Such assignments are valid, since both Rectangle and Triangle are
classes derived from Polygon

• Dereferencing ppoly1 and ppoly2 (with *ppoly1 and *ppoly2) is
valid and allows us to access the members of their pointed objects.
But because the type of ppoly1 and ppoly2 is pointer to Polygon
(and not pointer to Rectangle nor pointer to Triangle), only the
members inherited from Polygon can be accessed, and not those
of the derived classes Rectangle and Triangle

• That is why the program above accesses the area members of both
objects using rect and trgl directly, instead of the pointers; the
pointers to the base class cannot access the area members

Pointers to base class

http://www.cplusplus.com/

18

 Example 1:

• Member area could have been accessed with the pointers to
Polygon if area were a member of Polygon instead of a member of
its derived classes, but the problem is that Rectangle and Triangle
implement different versions of area, therefore there is not a single
common version that could be implemented in the base class

Pointers to base class

http://www.cplusplus.com/

 Introduction

 Base & Derived Classes

 Polymorphism

 Pointers to base class

 Virtual members

19

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

20

 A virtual member is a member function that can be
redefined in a derived class, while preserving its
calling properties through references

 The syntax for a function to become virtual is to
precede its declaration with the virtual keyword

Virtual members

http://www.cplusplus.com/

21

 Example 2:

Virtual members

http://www.cplusplus.com/

22

 Example 2:

• All three classes (Polygon, Rectangle and Triangle) have the same
members: width, height, and functions set_values and area

• The member function area has been declared as virtual in the base
class because it is later redefined in each of the derived classes

• Non-virtual members can also be redefined in derived classes, but
non-virtual members of derived classes cannot be accessed
through a reference of the base class: i.e., if virtual is removed
from the declaration of area in the example above, all three calls
to area would return zero, because in all cases, the version of
the base class would have been called instead

Virtual members

http://www.cplusplus.com/

23

 Example 2:

• Therefore, essentially, what the virtual keyword does is to allow a
member of a derived class with the same name as one in the base
class to be appropriately called from a pointer, and more precisely
when the type of the pointer is a pointer to the base class that is
pointing to an object of the derived class, as in the above example

• A class that declares or inherits a virtual function is called a
polymorphic class

Virtual members

http://www.cplusplus.com/

 Introduction

 Base & Derived Classes

 Polymorphism

 Pointers to base class

 Virtual members

 Abstract base classes

24

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

25

 Abstract base classes are something very similar to
the Polygon class in the previous example

• They are classes that can only be used as base classes, and
thus are allowed to have virtual member functions without
definition (known as pure virtual functions)

• The syntax is to replace their definition by =0

 An abstract base Polygon class could look like this:

Abstract base classes

http://www.cplusplus.com/

26

• Notice that area has no definition; this has been replaced by =0,
which makes it a pure virtual function. Classes that contain at
least one pure virtual function are known as abstract base
classes

• Abstract base classes cannot be used to instantiate objects
Therefore, this last abstract base class version of Polygon could
not be used to declare objects like:

• But an abstract base class is not totally useless. It can be used to
create pointers to it, and take advantage of all its polymorphic
abilities. For example, the following pointer declarations would
be valid:

Abstract base classes

http://www.cplusplus.com/

27

 Example 4:

Pointers to base class

http://www.cplusplus.com/

28

 Example 3:

Abstract base classes

http://www.cplusplus.com/

29

 Virtual members and abstract classes grant C++
polymorphic characteristics, most useful for
Object-Oriented Projects

 Of course, the examples above are very simple use cases,
but these features can be applied to arrays of objects or
dynamically allocated objects

 Next example combines some of the features, such as
dynamic memory, constructor initializers and
polymorphism

Abstract base classes

http://www.cplusplus.com/

30

 Example 5:

Pointers to base class

http://www.cplusplus.com/

31

 Example 5:

• Notice that the ppoly pointers:

are declared being of type "pointer to Polygon", but the
objects allocated have been declared having the derived
class type directly (Rectangle and Triangle)

Pointers to base class

http://www.cplusplus.com/

32

 Generic programming refers to performing
operations on different types using a single piece of
code

• Examples include the application of searching and
sorting algorithms to different data types

 In C++ it is normally done using templates

Polymorphism

©Inheritance and Polymorphism, M Spann

33

 Polymorphism is a key feature of object oriented
programming

 Complex systems are able to be easily extended

1. The extendibility is provided by defining new classes
within an inheritance hierarchy

2. Objects of these new classes are accessed through a
base class reference

3. These objects add new behaviours to the system
through a common interface to the application
(the base class virtual functions)

Polymorphism

©Inheritance and Polymorphism, M Spann

34

 For example we could extend the list of animals to
which we can send „move‟ messages in our video
game application

• Each animal is responsible for its own movement
code which can easily ‘plug-in’ to the main
application

• Thus the application is easily extended with minimal
changes to the main application code

Polymorphism

©Inheritance and Polymorphism, M Spann

Polymorphism

©Inheritance and Polymorphism, M Spann

animal Move

Application

35

36

 We have looked at how we can extend existing classes
through the idea of inheritance

 We have seen how, by accessing derived classes
through a base class pointer, object behaviour is
determined at run time through polymorphism

 We have looked at the significance of polymorphism
in object orientation

• Object oriented applications are easily extended with
additional code mainly confined to new derived
classes

Polymorphism - Simmary

©Inheritance and Polymorphism, M Spann

37

 Object Oriented Programming

 Questions?!

mentor.hamiti@universitetiaab.com

