
O b j e c t O r i e n t e d P r o g r a m m i n g

Week 9:

P o i n t e r s

Asst. Prof. Dr. Mentor Hamiti

mentor.hamiti@universitetiaab.com

A A B U n i v e r s i t y

Faculty of Computer Sciences

 Midterm Exam!

2

 Last Time?!

 Pointers

 Pointer Operators

 Pass-by-Reference with Pointers

 Built-In Arrays

 Using const with Pointers

 sizeof Operator

 Pointer Expressions and Pointer Arithmetic

 Relationship Between Pointers and Built-In Arrays

3

 Today

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

4

 Pointers are one of the most powerful, yet
challenging to use, C++ capabilities

 Our goals here are to help you determine when it’s
appropriate to use pointers, and show how to use
them correctly and responsibly

 Pointers also enable pass-by-reference and can be
used to create and manipulate dynamic data
structures that can grow and shrink, such as linked
lists, queues, stacks and trees

 We also show the intimate relationship among
built-in arrays and pointers

Pointers

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

5

 Indirection

 A pointer contains the memory address of a variable
that, in turn, contains a specific value

 In this sense, a variable name directly references a
value, and a pointer indirectly references a value

 Referencing a value through a pointer is called
indirection

 Pointers can be declared to point to objects of any
data type

Pointer Variable Declarations and Initialization

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

6

 Directly and indirectly referencing a variable

• Diagrams typically represent a pointer as an arrow
from the variable that contains an address to the
variable located at that address in memory

Pointer Variable Declarations and Initialization

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 The declaration:

 int *countPtr, count;

• declares the variable countPtr to be of type int * (i.e., a
pointer to an int value) and is read (right to left),
“countPtr is a pointer to int”

 Variable count in the preceding declaration is declared to
be an int, not a pointer to an int

 The * in the declaration applies only to countPtr

• Each variable being declared as a pointer must be preceded
by an asterisk (*)

• When * appears in a declaration, it is not an operator;
It indicates that the variable being declared is a pointer

7

Pointer Variable Declarations and Initialization

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

8

Pointer Variable Declarations and Initialization

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

9

 Initializing Pointers

 Pointers should be initialized to nullptr (new in C++11)
or an address of the corresponding type either when
they’re declared or in an assignment

 A pointer with the value nullptr “points to nothing”
and is known as a null pointer

Pointer Variable Declarations and Initialization

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

10

 In earlier versions of C++, the value specified for a
null pointer was 0 or NULL

 NULL is defined in several standard library headers
to represent the value 0

• Initializing a pointer to NULL is equivalent to
initializing a pointer to 0, but prior to C++11,
0 was used by convention

 The value 0 is the only integer value that can be
assigned directly to a pointer variable without first
casting the integer to a pointer type

Pointer Variable Declarations and Initialization

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Pointers

 Pointer Operators

11

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Address (&) Operator

 The address operator (&) is a unary operator that
obtains the memory address of its operand

 int y = 5; // declare variable y

 int *yPtr = nullptr; // declare pointer variable yPtr

 yPtr = &y; // assign address of y to yPtr

 Graphical representation of a pointer pointing to a
variable in memory:

12

Pointer Operators

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

13

 Example:

• A pointer representation in memory with integer
variable y stored at memory location 600000 and
pointer variable yPtr stored at location 500000

 Representation of y and yPtr in memory:

Pointer Operators

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Indirection (*) Operator

 The unary * operator - commonly referred to as the
indirection operator or dereferencing operator

• returns an lvalue representing the object to which its
pointer operand points

 int y = 5;

 int *yPtr = nullptr;

 yPtr = &y;

 *yPtr = 9;

 cout<<yPtr<<endl;
 cout<<&y<<endl;
 cout<<*yPtr<<endl;
 cout<<y<<endl;

14

Pointer Operators

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Example 1: Using the Address (&) and Indirection (*) Op.

15

Pointer Operators

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

16

 The address (&) and dereferencing operator (*) are
unary operators on the fourth level

Pointer Operators

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Pointers

 Pointer Operators

 Pass-by-Reference with Pointers

17

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

18

 There are three ways in C++ to pass arguments to a
function:

• 1. pass-by-value, 2. pass-by-reference with reference
arguments and 3. pass-by-reference with pointer
arguments

 Pointers, like references, can be used to modify one or
more variables in the caller or to pass pointers to large
data objects to avoid the overhead of passing the objects by
value

 Pointers and the indirection operator (*) can be used to
accomplish pass-by-reference

 When calling a function with an argument that should be
modified, the address of the argument is passed

Pass-by-Reference with Pointers

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

19

 Example 2:

Pass-by-Reference with Pointers

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

20

 Example 3:

Pass-by-Reference with Pointers

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

21

 All Arguments Are Passed By Value

 In C++, all arguments are always passed by value

 Passing a variable by reference with a pointer does not
actually pass anything by reference—a pointer to that
variable is passed by value and is copied into the
function’s corresponding pointer parameter

 The called function can then access that variable in
the caller simply by dereferencing the pointer, thus
accomplishing pass-by-reference.

Pass-by-Reference with Pointers

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

22

Graphical Analysis of Pass-By-Value (Ex. 2)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

23

Graphical Analysis of Pass-By-Value (Ex. 2)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

24

Graphical Analysis of Pass-By-Reference (Ex. 3)

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Pointers

 Pointer Operators

 Pass-by-Reference with Pointers

 Built-In Arrays

25

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

26

 Declaring a Built-In Array

 // c is a built-in array of 12 integers

 int c [12];

 Accessing a Built-In Array’s Elements

• As with array objects, the subscript ([]) operator is used

to access the individual elements of a built-in array

 Initializing Built-In Arrays

 int n[5] = { 50, 20, 30, 10, 40 };

• Initialized - fundamental numeric types are set to 0, bools are
set to false, pointers are set to nullptr and class objects are
initialized by their default constructors

Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

27

 Passing Built-In Arrays to Functions

 The value of a built-in array’s name is implicitly
convertible to the address of the built-in array’s first
element

• So arrayName is implicitly convertible to
&arrayName[0]

 For built-in arrays, the called function can modify all
the elements of a built-in array in the caller - unless
the function precedes the corresponding built-in array
parameter with const to indicate that the elements
should not be modified

Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

28

 Declaring Built-In Array Parameters

 A built-in array parameter can be declared in a
function header:

 int sumElements (const int values[], const size_t
 numberOfElements)

• which indicates that the function’s first argument should be
a one-dimensional built-in array of ints that should not be
modified by the function

 The preceding header can also be written as:

 int sumElements(const int *values, const size_t
 numberOfElements)

Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

29

 Built-in arrays have several limitations:

• They cannot be compared using the relational and equality
operators - you must use a loop to compare two built-in
arrays element by element

• They cannot be assigned to one another

• They don’t know their own size - a function that processes
a built-in array typically receives both the built-in array’s
name and its size as arguments

• They don’t provide automatic bounds checking - you must
ensure that array-access expressions use subscripts that are
within the built-in array’s bounds

 Objects of class templates array and vector are safer,
more robust and provide more capabilities than built-in
arrays

Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

30

 Sometimes Built-In Arrays Are Required

• There are cases in which built-in arrays must be used,
such as processing a program’s command-line
arguments

 - Such arguments typically pass options to a program

• On a Windows computer, the command: dir /p
uses the /p argument to list the contents of the current
directory, pausing after each screen of information

• On Linux or OS X, the following command uses the
-la argument to list the contents of the current directory
with details about each file and directory: ls -la

Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Pointers

 Pointer Operators

 Pass-by-Reference with Pointers

 Built-In Arrays

 Using const with Pointers

31

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

32

 Many possibilities exist for using (or not using) const
with function parameters

 Principle of least privilege:

 Always give a function enough access to the data

 in its parameters to accomplish its specified task,
 but no more

Using const with Pointers

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

33

 There are four ways to pass a pointer to a function:

1. A nonconstant pointer to nonconstant data

2. A nonconstant pointer to constant data

3. A constant pointer to nonconstant data

4. A constant pointer to constant data

 Each combination provides a different level of access
privilege

Using const with Pointers

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

34

 The highest access is granted by a nonconstant
pointer to nonconstant data

 The data can be modified through the dereferenced
pointer, and the pointer can be modified to point to
other data

 Such a pointer’s declaration:

 int *countPtr

does not include const

1. Nonconstant Pointer to Nonconstant Data

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

35

 A nonconstant pointer to constant data

• A pointer that can be modified to point to any data item of
the appropriate type, but the data to which it points cannot
be modified through that pointer

 Might be used to receive a built-in array argument to a
function that should be allowed to read the elements, but
not modify them

 Any attempt to modify the data in the function results in a
compilation error

 Sample declaration: const int *countPtr;

• Read from right to left as “countPtr is a pointer to an integer
constant” or more precisely, “countPtr is a non-constant
pointer to an integer constant.”

2. Nonconstant Pointer to Constant Data

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

36

 Example 4:

2. Nonconstant Pointer to Constant Data

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

37

 A constant pointer to nonconstant data is a
pointer that always points to the same memory
location, and the data at that location can be modified
through the pointer

 Pointers that are declared const must be initialized
when they’re declared

3. Constant Pointer to Nonconstant Data

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

38

 Example 5:

3. Constant Pointer to Nonconstant Data

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

39

 The minimum access privilege is granted by a
constant pointer to constant data

• Such a pointer always points to the same memory
location, and the data at that location cannot be
modified via the pointer

• This is how a built-in array should be passed to a
function that only reads from the built-in array, using
array subscript notation, and does not modify the
built-in array

4. Constant Pointer to Constant Data

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

40

 Example 6:

4. Constant Pointer to Constant Data

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Pointers

 Pointer Operators

 Pass-by-Reference with Pointers

 Built-In Arrays

 Using const with Pointers

 sizeof Operator

41

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

42

 The unary operator sizeof determines the size in
bytes of a built-in array or of any other data type,
variable or constant during program compilation

 When applied to a built-in array’s name, the sizeof
operator returns the total number of bytes in the
built-in array as a value of type size_t

 When applied to a pointer parameter in a function
that receives a built-in array as an argument, the
sizeof operator returns the size of the pointer in
bytes—not the built-in array’s size

sizeof Operator

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

43

 Example 7:

sizeof Operator

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Pointers

 Pointer Operators

 Pass-by-Reference with Pointers

 Built-In Arrays

 Using const with Pointers

 sizeof Operator

 Pointer Expressions and Pointer Arithmetic

44

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

45

 Pointers are valid operands in arithmetic expressions,
assignment expressions and comparison expressions

 C++ enables pointer arithmetic - a few arithmetic
operations may be performed on pointers:

• increment (++)

• decremented (--)

• an integer may be added to a pointer (+ or +=)

• an integer may be subtracted from a pointer (- or -=)

• one pointer may be subtracted from another of the
same type
 - this particular operation is appropriate only for two

 pointers that point to elements of the same built-in array

Pointer Expressions and Pointer Arithmetic

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

46

 Assume that int v[5] has been declared and that its
first element is at memory location 3000

 Assume that pointer vPtr has been initialized to point
to v[0] (i.e., the value of vPtr is 3000)

 Variable vPtr can be initialized to point to v with
either of the following statements (for a machine with

four-byte integers):

int *vPtr = v;

int *vPtr = &v[0];

Pointer Expressions and Pointer Arithmetic

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

47

 Adding Integers to and Subtracting Integers from
Pointers

 In conventional arithmetic, the addition 3000 + 2
yields the value 3002

• This is normally not the case with pointer arithmetic

• When an integer is added to, or subtracted from, a
pointer, the pointer is not simply incremented or
decremented by that integer, but by that integer times
the size of the object to which the pointer refers

• The number of bytes depends on the object’s data type

Pointer Expressions and Pointer Arithmetic

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

48

 Example:

 vPtr += 2;

• This statement would produce 3008 (from the
calculation 3000 + 2 * 4), assuming that an int is stored
in four bytes of memory

• If an integer is stored in eight bytes of memory, then the
preceding calculation would result in memory location
3016 (3000 + 2 * 8)

 In the built-in array v,
vPtr would now point
to v[2]

Pointer Expressions and Pointer Arithmetic

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

49

 Subtracting Pointers

 Pointer variables pointing to the same built-in array
may be subtracted from one another

 Example:

• if vPtr contains the address 3000 and v2Ptr contains
the address 3008, the statement

 x = v2Ptr - vPtr;

• would assign to x the number of built-in array elements
from vPtr to v2Ptr - in this case, 2

 Pointer arithmetic is meaningful only on a pointer
that points to a built-in array

Pointer Expressions and Pointer Arithmetic

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

50

 Pointer Assignment

 A pointer can be assigned to another pointer if both
pointers are of the same type

 Otherwise, a cast operator must be used to convert the
value of the pointer on the right of the assignment to the
pointer type on the left of the assignment

• Exception to this rule is the pointer to void (i.e., void *)

 Any pointer to a fundamental type or class type can be
assigned to a pointer of type void * without casting

• The compiler must know the data type to determine the
number of bytes to dereference for a particular pointer
- for a pointer to void, this number of bytes cannot be
 determined

Pointer Expressions and Pointer Arithmetic

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

51

 Comparing Pointers

 Pointers can be compared using equality and
relational operators

 Comparisons using relational operators are
meaningless unless the pointers point to elements of
the same built-in array

 Pointer comparisons compare the addresses stored in
the pointers

 A common use of pointer comparison is determining
whether a pointer has the value nullptr, 0 or NULL
(i.e., the pointer does not point to anything)

Pointer Expressions and Pointer Arithmetic

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

 Pointers

 Pointer Operators

 Pass-by-Reference with Pointers

 Built-In Arrays

 Using const with Pointers

 sizeof Operator

 Pointer Expressions and Pointer Arithmetic

 Relationship Between Pointers and Built-In Arrays

52

 Object Oriented Programming

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

53

 Pointers can be used to do any operation involving
array subscripting

 Example:

// create 5-element int array b; b is a const pointer

int b[5];

// create int pointer bPtr, which isn't a const pointer

int *bPtr;

// assign address of built-in array b to bPtr

bPtr = b;

// also assigns address of built-in array b to bPtr

bPtr = &b[0];

Relationship Between Pointers and Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

54

 Example:

// Built-in array element b[3] can alternatively be
// referenced with the pointer expression

 *(bPtr + 3)

// Just as the built-in array element can be referenced
// with a pointer expression

&b[3]

// The address can be written with the pointer expression

bPtr + 3

// Next expression also refers to the element b[3]

*(b + 3)

Relationship Between Pointers and Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

55

 Example 8:

Relationship Between Pointers and Built-In Arrays

©1992-2014 by Pearson Education, Inc. All Rights Reserved.

56

 Object Oriented Programming

 Questions?!

mentor.hamiti@universitetiaab.com

